UCRL- 93546
PREPRINT

A Low-Cost General Purpose Spectral
Display Unit Using an IBM PC

Sandra L. Robinson

IEEE Transactions on Nuclear Science
1985 Nuclear Science Symposium
San Francisco, CA
October 23, 1985

October 1985

This is a preprint of a paper intended for publication in a journal or proceedings. Since
changes may be made before publication, this preprint is made available with the
understanding that it will not be cited or reproduced without the permission of the
author.

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor the University
of California nor any of their employees. makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or usefol-
ness of any information, apparatus, product, or process disclosed, or represents that
its use would not infringe privately owned rights. Reference herein to any specific
commercial products, process, or service by trade name, trademark, manufacturer, or
otherwise, does not necessarily constitute or imply its endorsement, recommendation,
or favoring by the United States Government or the University of California. The
views and opinions of authors expressed herein do not necessarily state or reflect
those of the United States Government or the University of California, and shait not
be used for advertising or product endorsement purposes.

A LOW~-COST GENERAL PURPOSE SPECTRAL DISPLAY UNIT USING AN IEM PC*
Sandra L. Robinson
Lawrence Livermore National Laboratory
P.0. Box 808
Livermore, California 94550

Abstract

Many physics experiments require acquisition
and analysis of spectral data. Commercial
ninicomputer-based multichannel analyzers collect
detected counts at variocus energles, create a
histogram of the counts in memory, and display the
raesultant spectra. They acquire data and provide
the user-to-display interface. The system discussed
separates functions into the three modular
components of data acquisition, satorage, and
display. This decoupling of functions allows the
experimenter to use any number of detectors for data
collection before forwarding up to 64 spactra to the
display unit, thereby increasing data throughput
over that available with commercial systems. An IBM
PC was chosen for the low-cost, general purpose
display unit. Up to four spectra may be displayed
simultaneously in different colors. The histogram
saves 1024 channels per detector, 640 of which may
be distinctly displayed per spectra. The IEEE-488
standard provides the data path between the IBM PC
and the data collection unit., Data is sent to the
PC under interrupt control, using direct memory
access. Display manipulations available via
keyboard are also discussed.

Introduction and Motivation

Many types of physics experiments require
acquisition and analysis of spectral data.
Currently, minicomputer~based multichannel analyzers
may be purchased to collect detected counts at
various energy levels, create a histogram of the
counts in computer memory, and display the resultant
spectra. They handle data acquisition and also
interface to the operator for manipulating the
display. The number of detectors in use at the same
time is limited to the number of physical connectors
on the unit. Memory for saving events competes with
memory used for data aoquisition and the user
interface.

Decoupling the functions i{n the system would
remove current limitations by allowing the
experimenter to customize his or her system for
flexible experimentation. Consider the system as
divided into three blocks. One block consists of
data acquisition equipment, a second provides data
storage and forwarding, while a third handles real-
time display of the data forwarded. Since the
display system can concentrate on display functions
only, most of memory may be devoted to real~time
event storage for display. Data may be sent to the
display unit asynchronously, encoded with the
identification of the detector involved. Data
throughput is no longer limited to the number of
physical connectors on the display unit. Modularity
also leads to easier maintainability. The use of
standard components minimizes maintenance costs and
ensures a plug-in capabllity for a variety of
experimental set-ups.

The requirements of a low cost, general
purpose, real-time display system were determined.
These included an inter-computer communications link
handled in real-time (under direct memory access and

interrupt control), a histogram of the data, the
user interface, and the actual display. Up to four
spectra may be displayed simultaneously in different
colors. Techniques for spectral expansion and
manipulation were designed and implemented. This
paper describes the system enviromment, components,
and the syatem's capabilities. Specifically
described are the communication, display, and the
user interface subsystems.

Enviromment

Figure 1 shows the display system's external
environment. The multiple alpha detector (MAD)
system is shown with 32 detector pairs for .a total
of sixty four (64) detectors. This particular
detector system is being used to investigate the
alpha and spontaneous fission activities of short-
lived transfermium isotopes by the real-time
monitoring of the mother-daughter alpha decay
saquence [1]. A high speed Computer Automated
Measurement and Control (CAMAC) system acquires data
from the detectors. The data is atored by an
LSI-11/23 minicomputer which forwards the spectral
data to an IBM personal computer, the display unit
used for the project.

Figure 1. Multiple Alpha Detector System

s!al:em Components

The display system is shown in Figure 2. The
peraonal ocomputer has a total available memory of
512K bytea, two floppy disk drives, an IBM color

® Work performed under the auspicea of the U.S. Department of Energy by the Lawrence Livermore National

Laboratory under contract number W-7405-ENG-48.

display monitor, keyboard, graphics printer, color
graphics display card, and an IEEE-488 standard
interface card for receiving data from the LSI-11.

Display Components

Figure 2.

A number of personal computers were considered
for use as the display unit. The current market was
a major driving factor in the choice of the IBM
PC. While not very innovative as a computer, the
IBM PC has invaded a wide range of markets. This
has occurred because of the IBM name, the
availability and reliability of parts and software,
and the resulting standardization. IBM encouraged
third parties to make compatible peripherals,
memory, and software [2].

Software was written in both assembly language
and Fortran. Assembly was necessary for many of the
real-time functions. Fortran was chosen primarily
because it was the standard for the intended users
of the system.

Computer Communications

Providing a real-time link between the LSI-11
and the IBM PC was perhaps the most difficult task
in the project. At the time of design, little to
nothing existed in the way of complete and adequate
technical documentation on the personal computer.
The following description includes the direct memory
access (DMA) link using interrupts on the PC, and
the histogram created as a result of the interrupts.

In a real-time experiment, it is unacceptable
to require the master processor (the LSI in this
case) to wait for the slave (the personal computer)
to accept data. Current General Purpose Interface
Buses (GPIBs, which follow the IEEE 488 standard)
allow data transfer between an LSI-11 and an IBM
personal computer [3]. However, available software
required the slave to request to read data. The
project requirements dictated a true direct memory
access (DMA) to the PC, whereby the data is
automatically transferred to PC memory without
software polling and read commands. A low level
software driver was created for this purpose. Three
chips required programming. These were the GPIB
controller (7210), DMA controller (8237), and the
interrupt controller (8259A). The latter two are on
the PC system board [4]. The GPIB controller is on
a board installed in the PC. The GPIB controller on
the sending end is also installed in the LSI-11.
Data may be stored for further analysis at the
LSI-11 before being forwarded to the PC. Simple
commands transport data packets from the LSI to the
PC. However, once sent, data is automatically
accepted in the PC memory. This new approach to
inter-computer communication with the PC has yielded
a much faster, truly real-time data transfer. The

result is that the personal computer is a viable
instrument in the laboratory for data display.

The GPIB board at the LSI-11 side is capable of
providing data speeds up to 250K bytes per second
between the IEEE-U488 bus and the DEC LSI-11 bus. It
provides the hardware for decoding GPIB commands and
lmplements all functions defined in the IEEE-488
specifications. It is programmed in this system to
be the Controller and talker, and can send interface
messages to the IBM PC. The driver program is
written in Fortran under the RT~11 operating
system. The program resets the GPIB and sets up the
talker and listener addresses. It then reads from
available raw data files, preprocesses them by
pulling out spectral data, and places the data in
packets of 2048 bytes. When a packet is full, the
code sends the packet over the IEEE-488 bus to the
PC. It waits to receive an acknowledgement from the
PC before assembling the next packet.

All initialization code on the PC of the GPIB,
DMA, and interrupt controllers is written in
assembly language. The GPIB interface on the PC end
is initialized to the correct listen address. The
chip is initialized to listen mode. DMA is enabled,
and the interrupt is set up to interrupt on error.
The DMA controller chip on the PC system board keeps
one DMA channel open for reading data. The receive
buffer address and size are initialized. Now the
data may be transferred over the IEEE-488 bus and
immediately written into the receive buffer. The
remaining link is the interrupt controller.

The 8088 microprocessor on the PC system board
can respond to three kinds of interrupts: software,
normaskable external, and maskable external.
Critical events such as impending power failures
cause normaskable interrupts. The maskable
interrupt 1s used here when the receive buffer
fills. The PC has eight maskable interrupt lines,
three of which 1t uses for the aystem timer,
keyboard, and diskette adapter. The interrupt
controller must be initialized to one of the
remaining request lines. When the receive buffer is
full, an interrupt request signal is sent to the
interrupt controller. The controller checks to see
if the interrupt is masked. If not, it alerts the
8088 of the interrupt. The 8088 acknowledges the
interrupt. The 8259 controller releases a pre—
initialized base with which the 8088 calculates the
vector address for the interrupt service routine
[5]. The latter will check the status of the GPIB
board to see if an error occurred. If not, the
software knows that the receive buffer filled and
generated the interrupt. (There is no direct way to
interrupt on a full buffer. That is why the error
mode is chosen for an interrupt and the error status
must subsequently be checked to see if it was,
indeed an error interrupt as opposed to a filled
buffer.) Reading the status automatically clears
the interrupt line [6]. The service routine
temporarily disables interrupts and DMA while it
addresses an alternate buffer for receiving the next
packet. This double buffering is necessary to allow
the received data to be histogrammed while
collecting new data.

The standard operating mode of the 8259 is
called the fully nested mode. This means that all
interrupt request channels are priority ordered in a
circular fashion. The highest priority channel is
serviced first, and then becomes the lowest
priority. This ensures that all interrupts are
serviced. Priority modes can be changed by
programming the 8259 chip, but the standard mode was
used for this project.

One of the more challenging tasks in the
project was to ensure compatibility between the
Fortran and Macro assembler compilers. Typically,
on the PC, assembly code is used for small functions
requiring little data space. This project needed a
histogram size of over 200K bytes. The 8088
operates on segments which are 64K bytes in size.
This meant that separate data segments had to be
specified with careful attention given to preserve
the Fortran enviromment when exiting to the assembly
environment. The first Fortran compiler available
did not allow specification of these extra data
segments directly. It would place the stack in the
middle of these segments, ignoring their definition
in the assembly code. Fortunately, a new version of
the compiler was released mid-project which
corrected the problem. Segment pointers are saved
upon entering the assembly code, new segment
pointers are set up, and old ones are restored
before return to the Fortran main code. This
eliminates conflict between the two languages.

The histogram is developed in assembly. Three
eight bit bytes are used for each count. Screen
updates are made via Fortran graphics library calls.
Therefore, the histogram routine saves a copy of the
data along with its current count in the histogram
for the Fortran code to uae for screen updates.

This way, a mirror image is made of the receive
buffer along with current relevant counts in memory,
the receive buffer may be used for mare data, and
the histogram may be updated without waiting for thes
Fortran screen update. A data word is 16 bits long.
The upper 6 bits identify the detector inwvolvad, and
the lower 10 bits contain the channel number. These
bits are used to determine the addreas in the
histogram for incrementing new counts.

A vord is needed here concerning the use of the
two languages for this project. The Fortran
compiler used did not allow for byte manipulation,
nor could one addreas absolute memory locations
directly. For speed, the interrupt routines and
histogram formation were written in assembly. The
main code was written in Fortran because it was the
language of choice for the customer. The screen
updates were called from Fortran largely to maintain
a standard calling format so that the user could add
graphics as needed, and so that replacement of the
graphies board would be more direct. The latter
quickly became an evident need, as is explained
below.

Display

The color graphics board and monitor used
provide 640 X 200 pixel resolution with a palette of
16 colors. No higher resolution ia required for the
application, and the cost may thus be kept to a

minimum. The board contains its own refresh memory,
video proceasing, timing and control, and parallel
interface logic. The board came with a complete
library of basic graphics programs, callable in
Fortran, Basic, assembly or Pascal. The commands
used were simply a "draw line" for drawing the
cursors, and "put point® for plotting the histogram
[7]. Filgure 3 shows a typical display of data.
This board needs to be replaced in the future
because the manufacturer went out of business.
Fortunately, it is an IBM compatible board with
standard graphics library calls, and the switchover
should be fairly simple.

Saty dasecr eumbay for displey: 32
[] [| -] [] [3]

A “, 5\
LC 08 RE: RGN
Figure 3. Displayed Spectra

User Interface

Figure 4 shows the keyboard layout. Starting
with the function keys, F1-F4 are selection keys
used to choose spectra to display. The "erase 64"
key zeroes the spectra in the PC memory, as well as
on the screen if any are currently displayed. The
Terase sums" key zerces the four spectral sums in
memory, along with any summed spectra on display.
The "domain®™ key cycles around the selected specta,
one spectra per toggle of the key. This selects the
current domain, which definea the color of the
cursors to match the current spectra, and it defines
the speotra with which cursor movement and baseline
movement are defined. The baseline key will toggle
from the common baseline to a pre-defined baseline
for the current spectra. The last two function keys
provide x and y axis expansion and contraction. The
y scale moves from a linear scale to a log scale and
back again. The "Alt" key is held for expansion
along with the function key. The function key
pressed alone will contract the display.

The upper keypad contains the cursor movement
keys, four keys for two cursors moving in two
directions each. Reglon keys allow region
definition between cursors, region advancement,
deletion, and expansion of the region area to fill
the screen. Regions may also be summed. A
calibration key allows the operator to define keV

i
i

o | BB

EID E]IBEJE-I

E]EIEIDEJEI
[- I o
B | i S

SEEE
EIRE)
EISE)
=

EEE
=

Kaypad

$1]|=
Fo.

Function keys '=s=ws

Figure 4.

Keyboard Layout

per channel. A "help" key gives the operator a
picture of the keyboard layout, with definitions of
available functions.

The Fortran main program polls an assembly
keyboard routine to see if a key has been pressed.
This routine calls a keyboard interrupt in the BIQS,
which is the program area that controls standard
input and output functions in the PC. These are in
ROM. The interrupt routine returns a key number if
one was pressed, and the main program calls the
appropriate completion routine.

System Limitations and Recommendations

As mentioned earlier, the color graphics board
needs to be replaced with a currently manufactured
board. At the same time, screen updates should
follow histogram updates on a point by point, rather
than packet by packet basis. This would prevent
having to make a copy of the state of the histogram
for the Fortran screen update. The lack of
compatibility between Fortran and assembly, as well
as the lack of desirable functions in the Fortran
compller dictated the current design. Perhaps a
newer compiler version will correct current
deficiencies. For increased speed, screen updates
could directly address graphics memory, as opposed
to the current method of using library calls. The
latter was done to make the simplest and most
straightforward interface to the graphics board.
This aids upgrading or replacing the graphies board.

A language such as C would be preferable to
Fortran if the user community were comfortable with
it. C would interface nicely to the assembly
portions of the code. This alone would have saved
much development time.

Ideally, the display asystem would be able to
keep up with the fast data transafer rate. However,
the processor on the personal computer is limited in
speed. Also, the screen update is limited by a
relatively slow retrace signal.

A number of things should be done to speed up
execution of the code. One immediate way to do this
would be to upgrade the PC from an 8-bit data path
to a 16-bit path using one of the recent boards on
the market made for this purpose. This was tested
on the current system and showed a data throughput
rate increase of 260%.

Functionally, before a new point is painted on
the screen, the last point painted must be erased.
Unfortunately, if two colors cross, a color may be
erased, leaving "holes™ in its spectra. This could
be eliminated with more sophisticated hardware or
software. This, however, increases the cost of the
graphies. Currently, the operator may requeat that
a spectra be redrawn.

Summarx

The IBM PC may be successfully used as a low
cost alternative for spectral display. In its
current environment,it behaves as a modular display
component in a versatile experimental system. It
can support up to 64 different detectors, displaying
four spectra simultaneously in different colors. It
may be attached via a standard GPIB bus to an
LSI-11. Data is sent across the bus and placed
directly in the personal computer's memory without
the need for polling or software requests. Of the
1024 channels saved in memory, 640 of them may be
distinctly displayed. Two cursors track the current
spectra. A variety of functions are available at

the keyboard for spectral manipulation. These
include erasing spectra, changing baselines,
expanding and contracting the x and y axes, cursor
movement, defining regions between the cursors,
summing regions, and expanding regions to fill the
screen,

On commercial systems, [8] data acquisition as
well as display are in one unit. This limits the
number of detectors in use to the number of physical
connections on the acquisition/display unit
(typically four). The personal aomputer is
dedicated to display. It is a user-friendly, low-
cost system. Use of standardized components ensures
a plug-in capability with other computers connected
using an IEEE 488 standard interface. Four spectra
displayed simultaneously in different colors add to
the versatility of the display system for real time
spectral display.

As faster graphics controllers and add-on
boards are developed, the concept of using a
personal computer for scientific applications will
become more viable. The current configuration is
fast enough for same applications, but would not be
able to handle data rates above 2500 bytes per
second. Future developments on the horizon for
personal computers promise to provide greater speed
and more options. This will better support the use
of these computers for scientific and engineering
purposes, as opposed to the business community for
which the market is currently geared.

References

[1] E. Watkins, R. Dougan, J. McQuaid, "A
LSI/CAMAC System for Heavy Elements
Research.” IEEE Transactions on Nuclear
Science, NS~32:4 (August 1985), 1453-56.

[2] J. Pingry, "The Expanding Realm of the IBM
PC." Digital Design, (February 1984), 80-86.

[3] GPIB-PC User Reference Manual For the IBM
Personal Computer. National Instruments,
(September 1983).

[4] 1APX 86,88 User's Manual. Intel Corporation,
(August 1981), A135-A174.

[5] C. Dunford, "Interrupts and the IBM PC,
Part I." PC Tech Journal, 1:3
(November /December 1983), 173-199.

[6] C. Dunford, "Interrupts and the IBM PC,
Part II." PC Tech Journal, 1:4
(January 1984), 144-186.

[7] MicroGraphics System Operation and Reference
Manual. MicroGraphics Technology Corporation,

1983.

[B] ND66 Multichannel Analyzer/Remote Terminal
Operator's Inatruction Manual. Nuclear Data,

Inc., 1981.

[9] M. Franklin, Using the IBM PC: Organization
and Assembly Language Programming. Holt,
Rinehart and Winston, 1984.

[10] 1IBM Technical Reference. IBM Corporation.
[11] L. J. Scanlon, "Mining the System

Resources."” PC World, (November 1983),
230-241,

